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Abstract— Humans can interact effectively with complicated
environments, seamlessly taking actions to learn about the
objects around them and build individual cognitive world
models. If robots of the future are to easily collaborate with
humans on tasks in a range of dynamic environments, those
robots must be able to learn from human interaction and
understand personalized mental models in near real-time. These
interactions are inherently multisensory, leading to layers of
complexity. As a step towards understanding multisensory
human mental models from interactions, we gathered pilot
data from interactions and probed density judgments in virtual
reality with pseudohaptic illusions. We then implemented a
particle filtering workflow to estimate each individual’s mental
model. Future work could expand this to consider more sensory
information in different tasks.

I. INTRODUCTION

People’s perceptions and decisions arise from the dy-
namic interplay of sensory channels, including vision, audi-
tion, touch, and proprioception. People continually integrate
streams of uncertain, partially redundant signals, applying
prior knowledge about object properties, physics, and their
own actions to form a mental model of the world. Capturing
that complexity is critical if we hope to build robots that
can easily collaborate with humans in the physical world,
anticipate their intentions, and adapt to the nuanced ways
people explore and learn about their environment.

Virtual Reality (VR) is an effective way to probe these
multisensory learning processes. Unlike purely physical se-
tups, VR allows us to systematically manipulate both the true
physical properties of objects (e.g., mass, inertia) and the
sensory cues that participants receive (e.g., vision, haptics),
holding other factors constant. It also provides a platform
to record and track all user interactions, such as grasping,
lifting, squeezing, and dropping, temporally reflecting how
people take action to learn about their environment.

This work introduces a Bayesian estimation framework for
modeling human multisensory cognition of object density in
VR. We ran a pilot study (n = 4) where people interacted
with three different objects. In addition to considering peo-
ple’s interactions with each object, we also periodically elicit
participants’ judgments and confidence ratings of a hidden
property of the object: density. In the model, a population of
particles represents each user’s evolving belief about object
properties, each encoding a possible ordering of objects by
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their physical attribute of interest. As participants interact
with the objects, we update the particle weights via a tailored
transition and observation model, incorporating observed and
self-reported feedback.

After fitting user-specific parameters in an initial training
round, we test the model’s predictive accuracy in a second
round of interactions. We demonstrate how our approach
captures individual differences in multisensory learning by
comparing the model’s inferred orderings against partici-
pants’ actual responses. Our work is a simple but important
step towards adaptive robotic systems that can understand
and respond to human mental models in real-time.

II. RELATED WORK

A. Haptic & Virtual Interactions

We use our hands and sense of touch to perceive and learn.
Researchers have identified that we perform exploratory
procedures with our hands that are directly tied to the infor-
mation we want to gather [1]. Later work compared touch
with and without vision, and found that haptic information
tells us more about material properties than shape.

In virtual interactions, haptic feedback is usually absent
without additional hardware. However, pseudohaptic illu-
sions allow designers of virtual environments to provide the
sense of touch with only visual manipulations. One such
illusion is the Control to Display (C/D) ratio, in which
the mapping between the user’s and display’s motions is
modified with a ratio – where 1 is precisely the user’s input,
<1 slows the user’s input, and >1 speeds the user’s input.
This illusion works because our proprioceptive sense (the
body’s sense of position and movement in space) is not as
accurate without visual feedback. In VR, multiple studies
have found that the C/D ratio influences people’s perception
of mass [2], [3], with values <1 increasing mass and >1
decreasing mass perception. Here, we use C/D ratios to give
signals about mass.

B. Density Perception & Modeling

Density is the ratio of mass to volume. While we can
assess shape with vision alone, humans are not skilled
at estimating volume. Some say we have elongation bias,
wherein our perception depends on the object’s longest linear
dimension [4], [5]. A study comparing a tetrahedron, cube,
and sphere found significant biases, seemingly due to people
incorrectly using the surface area as a proxy for volume [6].
Alternatively, mass, which is difficult to assess visually, can
be evaluated haptically through statically holding objects [1].

Our experience interacting with objects creates forces
and resistances, which combine with our expectations from



Fig. 1. A participant is seated in an empty study space wearing a Quest
3 HMD. Virtual items and question panels are shown semi-transparently.
Participants see three virtual objects and a question panel asking them to
rate the relative density of the objects and their confidence in each ranking.

planning before taking that action, to produce our overall
perception [7]. Some researchers have developed models of
how people interpret relative mass from two objects hitting
each other. Cohen & Ross used probability distributions and
Markov Chain Monte Carlo to model participant responses
for such simple mass ratios [8]. More work is needed to fully
understand how humans process these complex signals and
how to model their perceived responses.

III. METHODS

We conducted a pilot study in VR where participants
interacted with three objects at a time and ranked them
by perceived density. Additionally, we built a model to
determine each participant’s belief flexibility and sensory
noise, which we then used to predict responses. Below, we
introduce the necessary software, explain the experimental
parameters, and describe the cognitive model.

A. Study Design

To control and record the factors involved in this work,
we ran the study in VR with a Meta Quest Oculus 3
head-mounted display and paired controllers (Figure 1). We
built the interaction with the Unity Game Engine (Version
2022.3.15f1) and the Meta Interaction SDK.

The study focuses on interaction methods and how that
might allow future systems to intuit the human’s mental
model of a series of objects through their interactions alone.
We wanted a task that required both vision and touch (or
proprioception). Volume alone can be judged visually (with
varying accuracy), and mass requires interpreting weight
from our sense of touch. Thus, density is a more complex ma-
terial property that combines information across the senses.

As highlighted by prior work, people are not ideal at
estimating volumes of different shapes, and various illusions
(e.g., size-weight, color-size) can affect those estimations
further [9]. To reduce those factors, we selected three objects
with equal volume presented with the same untextured, matte
material and color, to avoid any cues about thickness or
material properties. Participants interact with a cube, sphere,
and cylinder in the study. We selected these three shapes as

they are difficult to judge the volume of one compared to
the other, so we forced participants to make a qualified mass
judgement.

People interacted with two sets of the three objects in two
rounds, with the volume randomly assigned to one of two
values (v = 43, 91 cm3; corresponding to a cube with side
lengths of 3.5 and 4.5 cm). We also randomized the objects’
relative locations between rounds.

However, shape alone should not inform participants about
density. So, we manipulate the mass of each object (m =
150, 300 g) – again randomized between the two rounds.
Additionally, we introduce one pseudo-haptic illusion –
alteration of the C/D ratio during volitional movements of the
user holding on to different objects. We chose two different
C/D ratios (cd = 0.115, 0.125). For each C/D ratio, objects
have three possible values: no alteration (1) and two options
near perceptual detection (1+cd & 1−cd) in either direction
from no modulation.

We gave participants a fixed, six-second exploration win-
dow [1] which began upon the first interaction in each trial.
After the exploration window, we provided a randomized
reflective delay (1.5 - 2.5 s) before the question panel would
appear. This short delay should allow us to capture an
“online” belief without memory decay or strategic thinking.

B. Cognitive Modeling

Our goal is to capture each participant’s evolving belief
about the object densities. We assume a simple and intuitive
model with two user-specific parameters: ϕ (belief flexibility)
and σm (sensory noise). Since the primary feedback from
each user is a relative ranking of the objects and their
confidence in each position, we represent the belief as a
particle filter over the discrete space of all object ranking
permutations [10]. We use the parameters from the first round
of trials to predict out-of-sample behavior in the second
round. Finally, we compare these predictions with the user’s
self-reported ranking.

1) User-Specific Parameters: The first parameter, ϕ, rep-
resents how likely the user is to change their belief:

• High ϕ: many swaps, user is flexible.
• Low ϕ: few swaps, user is conservative in updating.

The second parameter, σm, quantifies the assumed noise in
motion feedback:

• Low σm: feedback treated as precise.
• High σm: feedback treated as noisy.
2) Particle Filtering for Bayesian Belief Estimation:

Particle filtering is a sequential Monte Carlo method for
approximating the posterior distribution over latent states in
a Bayesian state-space model. At each time step t, the filter
maintains a set of N particles {π(i)
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(i)
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approximate the belief
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where πt is the hidden state and w
(i)
t are normalized weights.

Each particle π
(i)
t encodes one hypothesis about the true



state, and the population of particles defines a nonparametric
representation of the full posterior.

Filtering proceeds in two alternating steps:
• Prediction (Propagation) Each particle is propagated

forward through the transition model π
(i)
t ∼ p(π |

π
(i)
t−1), thereby forming a prior over the new state.

• Correction (Weighting & Resampling) Upon ob-
serving new data ot, each particle receives a weight
proportional to the likelihood p(ot | π(i)

t ). The weights
are then normalized, and particles are resampled with
replacement in proportion to their weights, yielding a
new equally weighted set that focuses computational
effort on high-probability regions.

The hidden state is a permutation (ordering) of the three
objects by density. Each particle is one candidate ordering,
and the weight update incorporates both:

1) a sensory likelihood comparing the observed motion
cue ot to the expectation under that ordering, and

2) a ranking likelihood measuring agreement between the
particle’s ordering and the user’s reported ranking rt.

After resampling, the cloud of particles represents the user’s
posterior belief, from which we read out the most probable
ordering and its implied confidence.

3) Estimate–Predict Workflow: Our modeling proceeds
in two distinct phases for each participant: (1) parameter
estimation using Round 1 data, and (2) open-loop prediction
on Round 2 data. Holding other parameters fixed, we fit
the two free parameters, the transition flexibility ϕ and the
sensory-noise standard deviation σm.

Round 1: Parameter Estimation
We jointly estimate ϕ and σm by maximizing the total

log-likelihood under our particle-filter model. On each trial
t we know:

• stimulus parameters {mt, vt, cdt}, yielding an expected
motion cue µt = sort(cdt/mt) (descending),

• the observed motion feedback ot,
• the user’s reported ranking rt and confidence ct.

We maintain N particles {π(i)} over permutations, initialized
uniformly, and propagate each via a transition kernel:

π
(i)
t ∼ T

(
π
(i)
t−1, ϕ

)
with T(π′ |π, ϕ) ∝ −e−ϕ dK(π′,π).

Each particle is then re-weighted by the product of three
likelihood terms:
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where τr and σc are hyperparameters used to calibrate the
model to user feedback. ĉt,r is the percentage of particles that
agree on the modal object at rank r. Summing and logging
these weights across all T trials yields a scalar objective
L(ϕ, σm), which we minimize via L-BFGS, initialized with

method-of-moments initial values. This fit uses all user
feedback (sensory, ranking, and confidence) to identify both
how precise the user’s motion perception is (σm) and how
readily they revise their ranking beliefs (ϕ).

Round 2: Open-Loop Prediction With ϕ̂, σ̂m fixed, we
make the model predict Round 2 behavior open-loop, i.e.,
without using any of the user’s new rankings or confidences.
We initialize the same particle set and, on each new trial t,
perform only:

1) Expectation: compute µt from the new (mt, vt, cdt).
2) Proposal: draw π

(i)
t ∼ T(π

(i)
t−1, ϕ̂).

3) Sensory update: re-weight each particle by
N (ot; µ

π
(i)
t

t , σ̂2
m) only.

4) Normalize & resample, then extract r̂t←mode{π(i)
t }

as the predicted ranking.
Because the filter gets no feedback in Round 2, the model
must generalize its Round 1 parameters to novel stimuli.

IV. PILOT STUDY
Four participants (µage = 24, 2 female) completed the

pilot study in alignment with our protocol, which was
approved by the Rice University Institutional Review Board
(IRB-FY2019-49). Over 15 minutes, participants interacted
with three objects in VR in two rounds.

We randomized each participant’s object location, mass,
volume, and C/D ratio between rounds. Participants were
instructed to pick up objects with their right hand/controller
and judge density. They could interact with objects in any
order and in any desired way.

Participants freely explored the objects in each 6-s trial.
They completed 10 distinct interactions and response trials
for each round. After each trial, there was a randomized
reflective delay before the questions appeared. The question
panel (Figure 1) had drop-down menus to rank the shapes
from most to least dense. Then, participants used sliders to
determine their confidence in each ranking.

During all trials, we recorded rankings, confidence, re-
sponse times, and which objects they interacted with, for
how long, and how much they manipulated them.

V. RESULTS & DISCUSSION
In this pilot study, we have two dependent variables

(Figure 2): relative density ranking and confidence for each
ranking. There are also several independent variables, in-
cluding mass, volume, and C/D ratio. We also recorded
the real and proxy (virtual – with C/D adjustments) hand
transformations and rotations during the study.

We implemented our model in Python 3.8 on a Google
Colab CPU runtime, using SciPy’s L-BFGS-B optimizer to
fit the two free parameters, ϕ and σm, to Round 1 data.
We held the particle-filter size at N = 500 and performed a
small grid search over τr ∈ {0.1, 1, 10} and σc ∈ {5, 10, 50}.
Reported results use the hyperparameter settings that maxi-
mized Round 2 top-1 accuracy; per-participant runtimes (20
trials) averaged under 30-s.

We evaluate predictive performance in Round 2 using two
metrics. Top-1 accuracy is the fraction of trials where the



Fig. 2. Ranking & Confidence Responses: grouped into columns by participant number and rows by study round. The x-axis shows the increasing trial
number. The left y-axis shows the relative rated densities of objects (solid lines). The right y-axis shows the confidence rating percentages (dotted lines).
Colors mark the object’s shape. The shapes on Trial Number 10 indicate the correct response.

TABLE I
FITTED PARAMETERS AND ROUND 2 PERFORMANCE

Participant ϕ̂ σ̂m Top-1 p@2

1 1.80 0.48 0.60 0.65
2 1.08 0.49 0.60 0.70
3 1.00 0.69 0.50 0.70
4 1.80 0.86 0.50 0.70

model’s and user’s top choices match. Precision@2 is the
fraction of the model’s top two predictions that overlap with
the user’s top two. These metrics quantify the exact and
near-exact recovery of the ranking. Table I summarizes these
results for each of the four pilot participants.

Overall, the model achieved a mean top-1 accuracy of 0.55
and a mean p@2 of 0.69 across participants. P1 combined
high flexibility with low sensory noise. P2 had low flexibility
and sensory noise. P3 also had low flexibility, but with
higher sensory noise – their strategy also seemed to change
between rounds (Figure 2), likely due to a smaller C/D ratio.
P4, by contrast, exhibited high flexibility but greater noise,
indicating that the model still captured overall behavior.

These individual differences show that the parameters are
meaningful. High ϕ users often change their ranking, while
high σm users treat their motion feedback as less reliable. In
addition to rankings and confidences, we recorded detailed
kinematic logs (hand trajectories, grasps, and release times),
which can be mined in future work to relate exploration
strategies to parameter estimates. The promising out-of-
sample performance under our open-loop Round 2 evaluation
demonstrates that our two-parameter model captures stable,
user-specific traits rather than overfitting Round 1 data.

VI. CONCLUSIONS
We have presented a pilot study and a compact two-

parameter cognitive model that captures how individuals
integrate pseudo-haptic motion cues to rank object density in
VR – towards a future where robots understand our multisen-
sory models of the world. Our particle filter recovered two
interpretable traits, belief flexibility ϕ and sensory noise σm,

successfully predicting out-of-sample rankings in Round 2
under novel stimulus settings. Participants had very different
strategies for completing the task, as demonstrated by the
pilot results and the model parameters.

Future work should expand these principles to more com-
plex tasks, e.g., shapes with different volumes, or additional
sensory feedback, e.g., audio or haptic feedback. These
studies could also simulate robot-partner interactions. Several
promising modeling extensions exist: richer latent represen-
tations for user beliefs and interactions, Bayesian hierarchical
models to share statistical strength across participants, and
sequential inference methods to scale to higher-dimensional
multimodal state spaces.
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